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Abstract

The generalized Bernstein basis in the space �n of polynomials of degree at most n, being an extension
of the q-Bernstein basis introduced by Philips [Bernstein polynomials based on the q-integers, Ann. Nu-
mer. Math. 4 (1997) 511–518], is given by the formula [S. Lewanowicz, P. Woźny, Generalized Bernstein
polynomials, BIT Numer. Math. 44 (2004) 63–78]

Bn
i (x;�| q) := 1

(�; q)n

[
n

i

]
q

xi(�x−1; q)i(x; q)n−i (i = 0, 1, . . . , n).

We give explicitly the dual basis functions Dn
k
(x; a, b,�| q) for the polynomials Bn

i
(x; �| q), in terms

of big q-Jacobi polynomials Pk(x; a, b,�/q; q), a and b being parameters; the connection coefficients
are evaluations of the q-Hahn polynomials. An inverse formula—relating big q-Jacobi, dual generalized
Bernstein, and dual q-Hahn polynomials—is also given. Further, an alternative formula is given, representing
the dual polynomial Dn

j
(0�j �n) as a linear combination of min(j, n − j) + 1 big q-Jacobi polynomials

with shifted parameters and argument. Finally, we give a recurrence relation satisfied by Dn
k

, as well as
an identity which may be seen as an analogue of the extended Marsden’s identity [R.N. Goldman, Dual
polynomial bases, J. Approx. Theory 79 (1994) 311–346].
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1. Introduction

The generalized Bernstein basis polynomials of degree n (n ∈ N) are defined by [16]

Bn
i (x; �|q) := 1

(�; q)n

[
n

i

]
q

xi(�x−1; q)i(x; q)n−i (i = 0, 1, . . . , n),

where q and � are real parameters such that q �= 1, and � �= 1, q−1, . . . , q1−n. Here we use the
q-Pochhammer symbol defined for any c ∈ C by

(c; q)0 := 1, (c; q)k :=
k−1∏
j=0

(1 − cqj ) (k�1),

and the q-binomial coefficient given by[
n

i

]
q

:= (q; q)n

(q; q)i(q; q)n−i

.

For convenience we shall always assume that q ∈ (0, 1). It should be stressed that the polynomials
Bn

i (x; �|q) are obtained as an extension of the q-Bernstein basis polynomials

bn
i (x; q) =

[
n

i

]
q

xi(x; q)n−i (0� i�n),

introduced by Phillips [20] (see also [18,19]). Notice that the classical Bernstein basis polynomials
(see, e.g., [3, p. 66]),

Bn
i (x) =

(
n

i

)
xi(1 − x)n−i (0� i�n),

as well the discrete Bernstein basis polynomials [22,23],

bn
i (N, x) = 1

(−N)n

(
n

i

)
(−x)i(x − N)n−i (0� i�n�N; N ∈ N),

are also limiting forms of the polynomials Bn
i (x; �|q); see (3.1)–(3.3), below. Here (c)k is the

Pochhammer symbol, defined for any c ∈ C by

(c)0 := 1, (c)k := c(c + 1) · · · (c + k − 1) (k�1).

We define the generalized Bézier curve as the parametric curve

P
�,q
n (t) =

n∑
i=0

WiB
n
i (u; �|q) (u = � + (1 − �)t; 0� t �1),

where Wi ∈ Rd (1�d �3, i = 0, 1, . . . , n) are given points. This representation, being an exten-
sion of previously defined Bézier curve [6, Chapter 4] and q-Bézier curve [18], is advantageous
for computations, on account of its shape-preserving property, and the numerical stability of the
related de Casteljau algorithm for curve evaluation (see [16]).

In computer-aided geometric design it is often necessary to obtain polynomial approximations
to more complicated functions in the Bernstein basis representation. In case of the least-squares



S. Lewanowicz, P. Woźny / Journal of Approximation Theory 138 (2006) 129–150 131

approximation, the question of transformations between Bernstein and orthogonal bases arises in
a natural way (see, e.g., [8,11,23]). Now, let us introduce the inner product 〈·, ·〉bqJ in the space
�n of polynomials of degree �n by

〈f, g〉bqJ :=
∫ aq

�

(x/a, qx/�; q)∞
(x, bqx/�; q)∞

f (x)g(x) dqx (0 < aq, bq < 1, � < 0),

a and b being parameters. Notice that big q-Jacobi polynomials Pk(x) ≡ Pk(x; a, b,�/q; q)

(see (3.4)) form a set of orthogonal polynomials with respect to that inner product (see, e.g.,
[13, § 3.5]). The notation used is explained in the final part of this section. Associated with the
basis Bn

i (x; �|q), there is a unique dual basis

Dn
0 (x; a, b,�|q), Dn

1 (x; a, b,�|q), . . . , Dn
n(x; a, b,�|q) ∈ �n

defined so that〈
Dn

i , Bn
j

〉
bqJ

= �ij (i, j = 0, 1, . . . , n).

Obviously, any polynomial p ∈ �n can be written in the form

p =
n∑

k=0

〈p, Dn
k 〉bqJ Bn

k .

However, little is known about the dual Bernstein bases; only in the classical Bernstein case, we
have a recurrence relation given by Ciesielski [5], and a representation in terms of Bernstein basis
polynomials obtained by Jüttler [11].

In this paper, we express explicitly the dual basis Dn
k in terms of big q-Jacobi polynomial basis

Pk; the connection coefficients are evaluations of another orthogonal polynomials, namely q-
Hahn polynomials. Hence, the polynomials Dn

k may be efficiently evaluated using the Clenshaw’s
algorithm (see, e.g., [25, § 10.2]) with a cost depending linearly on n. An inverse formula—relating
big q-Jacobi, dual generalized Bernstein, and dual q-Hahn polynomials—is also given. Further,
an alternative formula is given, representing the dual polynomial Dn

j (0�j �n) as a “short” linear
combination of min(j, n−j)+1 big q-Jacobi polynomials with shifted parameters and argument.
Finally, we give a recurrence relation satisfied by Dn

k , as well as an identity which may be seen
as an analogue of the extended Marsden’s identity [10].

In Section 2, we give some general results on dual bases. Section 3 contains the above-mentioned
results for the most general case, i.e. dual basis for generalized Bernstein basis. For the reader’s
convenience, in Sections 4 and 5, we discuss separately dual bases for q-Bernstein and classical
Bernstein polynomial bases. In Section 6, we give some examples of possible applications of
the presented results, in particular—the recurrence relation given for the dual Bernstein basis, to
obtain a least-squares polynomial approximation with a prescribed accuracy.

We end this section with a list of notation and terminology used in the paper. For more details
the reader is referred to the monographs [1] by G. Andrews, R. Askey and R. Roy, or [9] by
G. Gasper and M. Rahman, or the report [13] by R. Koekoek and R. Swarttouw. The q-integral is
defined by

∫ b

a

f (x) dqx :=
∫ b

0
f (x) dqx −

∫ a

0
f (x) dqx,
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where∫ a

0
f (x) dqx := a(1 − q)

∞∑
k=0

f (aqk)qk.

Extending the meaning of the q-Pochhammer symbol, put

(x; q)∞ :=
∞∏

j=0

(1 − qjx).

In the sequel, we make use of the convention

(c1, c2, . . . , ck)n :=
k∏

j=1

(cj )n, (c1, c2, . . . , ck; q)n :=
k∏

j=1

(cj ; q)n.

For c ∈ C, we define the q-number [c]q by

[c]q := qc − 1

q − 1
.

The generalized hypergeometric series is defined by (see, e.g., [1, § 2.1])

rFs

(
a1, . . . , ar

b1, . . . , bs

∣∣∣∣∣ z

)
:=

∞∑
k=0

(a1, . . . , ar )k

(1, b1, . . . , bs)k
zk,

while the basic hypergeometric series is defined by (see, e.g., [1, § 10.9])

r�s

(
a1, . . . , ar

b1, . . . , bs

∣∣∣∣∣ q; z

)
:=

∞∑
k=0

(a1, . . . , ar ; q)k

(q, b1, . . . , bs; q)k

(
(−1)kq(k

2)
)1+s−r

zk,

where r, s ∈ Z+ and a1, . . . , ar , b1, . . . , bs , z ∈ C.

2. General results on dual polynomial bases

2.1. Orthogonal basis and duality

Let �n denote the linear space of all polynomials of degree �n. Let {Pk} be a sequence
of orthogonal polynomials with respect to a given inner product 〈·, ·〉 in �n, i.e. deg Pk = k

(k = 0, 1, . . . , n) and

〈Pi, Pj 〉 = hi�ij (hi > 0; i, j = 0, 1, . . . , n).

Let b0, b1, . . . , bn be a basis in �n. There exists a uniquely defined basis d0, d1, . . . , dn ∈ �n,
called dual basis, such that

〈di, bj 〉 = �ij (i, j = 0, 1, . . . , n).

Notice that any polynomial w ∈ �n can be written in the form

w =
n∑

k=0

〈w, dk〉bk.
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Lemma 2.1. Let �ik and �jk be the coefficients in

Pk =
n∑

i=0

�kibi, bk =
n∑

i=0

�kiPi (0�k�n). (2.1)

Then the dual basis satisfies

Pi = hi

n∑
k=0

�kidk, di =
n∑

k=0

h−1
k �kiPk (0� i�n). (2.2)

Proof. From Eq. (2.1), we deduce

n∑
k=0

�ik�kj = �ij =
n∑

k=0

�ki�jk (i, j = 0, 1, . . . , n). (2.3)

We have to determine coefficients �ik and �ik such that

Pj =
n∑

k=0

�jkdk, di =
n∑

k=0

�ikPk.

Using the first equations of (2.1) and (2.2), we obtain

hj�ij = 〈Pi, Pj 〉 =
n∑

k=0

�ik

n∑
m=0

�jm〈bk, dm〉 =
n∑

k=0

�ik�jk,

which, in view of the first equality (2.3), means that �jk = hj�kj .
Similarly, using the second equalities of (2.1), (2.2), and of (2.3), we find that �ik =

h−1
k �ki . �

2.2. An identity

It is known (see, e.g., [1, p. 246]) that the Christoffel–Darboux kernel

Kn(x, t) :=
n∑

k=0

h−1
k Pk(t)Pk(x)

can be expressed as

Kn(x, t) = �n

�n+1hn

Pn+1(x)Pn(t) − Pn+1(t)Pn(x)

x − t
,

where �m is the leading coefficient of the polynomial Pm (m = 0, 1, . . .).

Lemma 2.2. The following identity holds:

n∑
i=0

bi(x)di(t) = Kn(x, t). (2.4)
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Proof. Making use of the second equations of (2.2), (2.1) and (2.3), we obtain
n∑

i=0

di(t)bi(x) =
n∑

i=0

(
n∑

k=0

h−1
k �kiPk(t)

)(
n∑

l=0

�ilPl(x)

)

=
n∑

k=0

h−1
k Pk(t)

n∑
l=0

Pl(x)

n∑
i=0

�ki�il =
n∑

k=0

h−1
k Pk(t)Pk(x). �

Eq. (2.4) may be considered as an analogue of the extended Marsden’s identity in an alternative
theory of dual polynomial bases discussed in [10].

2.3. Representation of polynomials

Let w be a polynomial of degree n. Assume that the coefficients ak in

w(x) =
n∑

k=0

akPk(x)

are known. In some applications (see, e.g., [7,8]), there is a need to transform the above expansion
to

w(x) =
n∑

k=0

ckbk(x).

Now, it is easy to observe that

ck =
n∑

i=0

�ikai (k = 0, 1, . . . , n), (2.5)

and that the inverse transformation is given by

ak =
n∑

j=0

�jkcj (k = 0, 1, . . . , n).

3. Dual generalized Bernstein basis

3.1. Generalized Bernstein basis

In [16], we have introduced the generalized Bernstein basis polynomials of degree n (n∈N) by

Bn
i (x; �|q) := 1

(�; q)n

[
n

i

]
q

xi(�x−1; q)i(x; q)n−i (0� i�n),

where q and � are real parameters such that q �= 1, and � �= 1, q−1, . . . , q1−n. Notice that the
classical Bernstein basis polynomials (see, e.g., [3, p. 66])

Bn
i (x) =

(
n

i

)
xi(1 − x)n−i (0� i�n),
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the discrete Bernstein basis polynomials [22,23]

bn
i (N, x) = 1

(−N)n

(
n

i

)
(−x)i(x − N)n−i (0� i�n�N; N ∈ N),

as well as the q-Bernstein basis polynomials

bn
i (x; q) =

[
n

i

]
q

xi(x; q)n−i (0� i�n),

recently introduced by Phillips (see [18–20]), are limiting forms of the polynomials Bn
i (x; �|q).

Namely, we have

lim
q↑1

Bn
i (x; �|q) = Bn

i

(
x − �

1 − �

)
, (3.1)

lim
q↑1

Bn
i (q−x; q−N |q) = bn

n−i (N, x), (3.2)

Bn
i (x; 0|q) = bn

i (x; q). (3.3)

Introduce the inner product in the space �n of polynomials of degree �n by

〈f, g〉bqJ :=
∫ aq

�

(x/a, qx/�; q)∞
(x, bqx/�)∞

f (x)g(x) dqx,

a and b being parameters, 0 < aq, bq < 1, � < 0. Notice that big q-Jacobi polynomials (see,
e.g., [13, § 3.5])

Pk(x) ≡ Pk(x; a, b,�/q; q) := 3�2

(
q−k, abqk+1, x

aq, �

∣∣∣∣∣ q; q

)
(3.4)

form a set of orthogonal polynomials with respect to that inner product, i.e.,

〈Pk, Pl〉bqJ = hk�kl, (3.5)

where

hk := M
(1 − �)

(1 − �q2k)

(q, bq, �q/�; q)k

(aq, �, �; q)k
(−a�q)kq(k

2), (3.6)

and

M := aq(1 − q)
(q, �q, �/(aq), aq2/�; q)∞

(aq, bq,�, �q/�; q)∞
, � := abq. (3.7)

Obviously, P0, P1, . . . , Pn also form a basis in �n. In [16], we obtained the following results.
Recall that the q-Hahn polynomials are given by (see, e.g., [9, Eq. (7.3.21)], or [13, § 3.6])

Qk(q
−x; a, b, N |q) := 3�2

(
q−k, abqk+1, q−x

aq, q−N

∣∣∣∣∣ q; q

)
, (3.8)

while the dual q-Hahn polynomials are defined by [13, § 3.7]

Rk (�(x); 	, �, N |q) := 3�2

(
q−k, q−x, 	�qx+1

	q, q−N

∣∣∣∣∣ q; q

)
, (3.9)
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where 0�k�N , N ∈ N, and �(x) := q−x + 	�qx+1. Generalized Bernstein basis polynomials
have the following representation in terms of big q-Jacobi polynomial basis [16]:

Bn
n−i (x; �|q) = q(i

2)(aq)n

[
n

i

]
q

(bq; q)n

(�q; q)n
(−�qn)−i (aq; q)i

(b−1q−n; q)i

×
n∑

j=0

q−(j+1
2 )
(

−qn

a

)j 1 − �q2j

1 − �

(aq, �, q−n; q)j

(q, bq, �qn+1; q)j

×Qj

(
q−i; a, b, n

∣∣∣q)Pj(x; a, b,�/q; q), (3.10)

where 0� i�n. Conversely, big q-Jacobi polynomials have the following representation in terms
of generalized Bernstein basis [16]:

Pi(x; a, b,�/q; q) =
n∑

j=0

Rn−j (�(i); a, b, n|q) Bn
j (x; �|q), (3.11)

where �(i) := q−i + �qi , 0� i�n. In particular, we have

Pn(x; a, b,�/q; q) =
n∑

j=0

(q−n/b; q)j

(aq; q)j
(�qn)jBn

n−j (x; �|q). (3.12)

3.2. Dual generalized Bernstein basis polynomials

Associated with the generalized Bernstein basis, there is a unique dual basis

Dn
0 (x; a, b,�|q), Dn

1 (x; a, b,�|q), . . . , Dn
n(x; a, b,�|q) ∈ �n

defined so that〈
Dn

i , Bn
j

〉
bqJ

= �ij (i, j = 0, 1, . . . , n).

We give a number of properties of the polynomials Dn
i (x; a, b,�|q).

3.2.1. Recurrence relation

Theorem 3.1. The following recurrence relation holds:

Dn+1
i (x; a, b,�|q) = 	n

i D
n
i (x; a, b,�|q) + (1 − 	n

i )D
n
i−1(x; a, b,�|q)

+ ϑn
i Pn+1(x; a, b,�/q; q), (3.13)

where 0� i�n + 1, Dn
−1(x; a, b,�|q) = Dn

n+1(x; a, b,�|q) = 0, and

	n
i := [n − i + 1]q

[n + 1]q , (3.14)

ϑn
i := h−1

n+1
(q−n−1/b; q)n+1−i

(aq; q)n+1−i

(�qn+1)n+1−i . (3.15)
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Proof. Argument used in the proof is fully analogous to the one used in [5] to prove similar result
for the (classical) dual Bernstein basis polynomials, associated with the Legendre inner product
(in this connection, see Theorem 5.1). Given a polynomial p ∈ �n, we have

p =
n∑

i=0

〈
p, Dn

i

〉
bqJ

Bn
i . (3.16)

Using the identity [16]

Bn
i = 	n

i B
n+1
i + (

1 − 	n
i+1

)
Bn+1

i+1 ,

where the notation used is that of (3.14), we obtain

p =
n+1∑
i=0

〈
p, 	n

i D
n
i + (1 − 	n

i )D
n
i−1

〉
bqJ

Bn+1
i .

Comparing this result with a representation of p as a linear combination of Bn+1
0 , Bn+1

1 , . . . ,

Bn+1
n+1 , similar to (3.16), we obtain〈

p, Dn+1
i

〉
bqJ

= 〈
p, 	n

i D
n
i + (1 − 	n

i )D
n
i−1

〉
bqJ

,

thus the polynomial

w := Dn+1
i − 	n

i D
n
i − (1 − 	n

i )D
n
i−1 ∈ �n+1

must have the form w = ϑn
i Pn+1, where (cf. (3.12))

ϑn
i hn+1 =〈w, Pn+1〉bqJ =

〈
Dn+1

i , Pn+1

〉
bqJ

=
n+1∑
j=0

(q−n−1/b; q)j

(aq; q)j
(�qn+1)j

〈
Dn+1

i , Bn+1
n+1−j

〉
bqJ

= (q−n−1/b; q)n+1−i

(aq; q)n+1−i

(�qn+1)n+1−i .

Hence follows (3.13). �

3.2.2. Expansions

Theorem 3.2. Big q-Jacobi polynomials have the following representation in terms of dual gen-
eralized Bernstein basis:

Pi (x; a, b,�/q; q) = M
(bq; q)n

(�q; q)n

(q−n, �q/�; q)i

(�qn+1, �; q)i
�i (aqi+1)n

×
n∑

j=0

q(j
2)

[
n

j

]
q

(−�qn)−j (aq; q)j

(b−1q−n; q)j

×Rj

(
�(i); a, b, n

∣∣q)Dn
n−j (x; a, b,�|q), (3.17)
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where �(i) := q−i + abqi+1, 0� i�n. Dual generalized Bernstein basis polynomials have the
following representation in terms of big q-Jacobi polynomial basis:

Dn
j (x; a, b,�|q) = M−1

n∑
k=0

1 − �q2k

1 − �

(aq, �, �; q)k

(q, bq, �q/�; q)k
(−a�)−kq−(k+1

2 )

×Qk

(
qj−n; a, b, n|q

)
Pk (x; a, b,�/q; q) , (3.18)

where 0�j �n.

Proof. Use Lemma 2.1, (3.10) and (3.11), and the relation (see, e.g., [13, p. 77])

Qk(q
−x; a, b, N |q) = Rx(�(k); a, b, N |q). � (3.19)

Remark 3.3. By the identity [24]

Qk(q
−x; A, B, N |q) = (q−k/B; q)k

(Aq; q)k
(ABqk+1)kQk(q

N−x; B−1, A−1, N |q−1),

Eq. (3.18) can be written as

Dn
j (x; a, b,�|q) = M−1

n∑
k=0

1 − �q2k

1 − �

(�, �; q)k

�k(q, �q/�; q)k

×Qk(r
−j ; b−1, a−1, n|r)Pk (x; a, b,�/q; q) , (3.20)

where r := q−1, 0�j �n.

In the next theorem, we give alternative formulas, representing the dual polynomial Dn
j (x; a,

b, �|q) (0�j �n) as a linear combination of certain min(j, n− j)+ 1 big q-Jacobi polynomials
with shifted parameters and argument.

Theorem 3.4. The following formulas hold for j = 0, 1, . . . , n:

Dn
j (x; a, b,�|q) = An

(q−n/a; q)j

(bq; q)j

j∑
k=0

(bqj+1)k
(q−j , �q−n/�; q)k

(�q, q−n/a; q)k

×Pn−k

(
x; a, bqk+1, �qk; q

)
; (3.21)

Dn
n−j (x; a, b,�|q) = Bn(�qn)j

(q−n/b; q)j

(aq; q)j

j∑
k=0

(�qn+2)k
(q−j , �q−n/�; q)k

(aq2, �q; q)k

×Pn−k

(
qk+1x; aqk+1, b, �qk; q

)
, (3.22)

where

An := (�q, �q; q)n

M�n(q, �q/�; q)n
, Bn := q−(n+1

2 ) (aq2; q)n

(−aq)n(bq; q)n
An. (3.23)
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Proof. We will prove the formula (3.21). Given j∈{0, 1, . . . , n}, let us define for m=0, 1, . . . , j

Sm(x) :=
n−m∑
k=0

(1 − �q2k+m)(�qm, �qm; q)k

(�qm)k(1 − �qm)(q, �q/�; q)k
q−(k+1

2 )−2mk

×Qk,mPk

(
x; a, bqm, �qm−1; q

)
(3.24)

with

Qk,m := Qk

(
rm−j ; rm/b, 1/a, n − m|r

)
, r := q−1.

Notice that by (3.20) we have

Dn
j (x; a, b,�|q) = M−1S0(x). (3.25)

We will show that (3.24) satisfies the following recurrence:

Sm(x) = fm(x) + qj−n−1 (1 − qm−j )(1 − �qm+1)

a(1 − bqm+1)(1 − qm−n)
Sm+1(x) (3.26)

for 0�m�j , with the “end” value Sj+1(x) := 0. Here

fm(x) := (�qm)m−n(�q, �q; q)n(q
−n/a; q)j (bq; q)m

(q, �q/�; q)n−m(�q, �q; q)m(bq, q−n/a; q)j

×Pn−m

(
x; a, bqm+1, �qm; q

)
. (3.27)

We shall need the identity

(1 − ABq2k+1)(1 − Cq)Pk (x; A, B, C; q)

= (1 − ABqk+1)(1 − Cqk+1)Pk (x; A, Bq, Cq; q)

−Cq(1 − qk)(1 − ABqk/C)Pk−1 (x; A, Bq, Cq; q) , (3.28)

which can be verified by substituting

Pk(x; A, B, C; q) = (−C)kq(k+1
2 ) (ABq/C; q)k

(Cq; q)k
3�2

(
q−k, ABqk+1, Aq/x

Aq, ABq/C

∣∣∣∣∣ q; x

C

)
;

the last equation can be obtained by applying the transformation [9, Eq. (3.2.2)] to the standard
form

Pk (x; A, B, C; q) = 3�2

(
q−k, ABqk+1, x

Aq, Cq

∣∣∣∣∣ q; q

)
.
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Using (3.28) with A = a, B = bqm and C = �qm−1 in (3.24), we get

Sm(x) =
n−m∑
k=0

(�qm+1, �qm+1; q)k

(�qm)k(q, �q/�; q)k
Qk,mPk

(
x; a, bqm+1, �qm; q

)

−
n−m∑
k=1

(�qm+1, �qm+1; q)k−1

(�qm)k−1(q, �q/�; q)k−1
Qk,mPk−1

(
x; a, bqm+1, �qm; q

)

=fm(x) +
n−m−1∑

k=0

(�qm+1, �qm+1; q)k

(�qm)k(q, �q/�; q)k

×(Qk,m − Qk+1,m

)
Pk

(
x; a, bqm+1, �qm; q

)
=fm(x) + qj−n 1 − qm−j

a(1 − bqm+1)(1 − qm−n)

×
n−m−1∑

k=0

(1 − �q2k+m+1)(�qm+1, �qm+1; q)k

(�qm+1)k(q, �q/�; q)k

×Qk,m+1Pk

(
x; a, bqm+1, �qm; q

)
=fm(x) + qj−n (1 − qm−j )(1 − �qm+1)

a(1 − bqm+1)(1 − qm−n)
Sm+1(x),

where

fm(x) := (�qm+1, �qm+1; q)n−m

(�qm)n−m(q, �q/�; q)n−m

Qn−m,mPn−m

(
x; a, bqm+1, �qm; q

)
. (3.29)

In the last but one leg we used the identity

Qk

(
q−t ; 	, �, N |q)− Qk+1

(
q−t ; 	, �, N |q)

= (1 − q−t )(1 − 	�q2k+2)

qk(1 − 	q)(1 − q−N)
Qk(q

1−t ; 	q, �, N − 1|q),

which can be deduced from [13, Eq. (3.7.6)] by the duality principle (3.19). Using

Qn−m,m = Qn−m

(
rm−j ,

rm

b
,

1

a
, n − m

∣∣∣r) = 2�1

(
rm−j , rn+1/(ab)

rm+1/b

∣∣∣∣∣ r; r

)

=
(

rn+1

ab

)j−m
(arm−n; r)j−m

(rm+1/b; r)j−m

= (q−n/a; q)j (bq; q)m

(bq; q)j (q−n/a; q)m
(3.30)

(see, e.g., [13, Eq. (0.5.9)]), we readily establish that fm(x) defined in (3.29) can be written in
the form (3.27).

This concludes the proof of the recurrence (3.26). Thus,

S0(x) =
j∑

k=0

fk(x)

k−1∏
m=0

qj−n (1 − qm−j )(1 − �qm+1)

a(1 − bqm+1)(1 − qm−n)
.

Inserting (3.27), simplifying and remembering (3.25), we obtain (3.21).
The proof of (3.22), which we do not give here, goes along the same lines. �
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In particular, Theorem 3.4 implies the following formulas:

Dn
0 (x; a, b,�|q) = AnPn(x; a, bq,�; q);

Dn
1 (x; a, b,�|q) = An

1 − q−n/a

1 − bq

[
Pn (x; a, bq,�; q)

+ (1 − q)(�qn − �)

(1 − �q)(1 − aqn)
Pn−1

(
x; a, bq2, �q; q

) ]
;

Dn
n−1(x; a, b,�|q) = Bnaq

1 − bqn

aq − 1

[
Pn(qx; aq, b,�; q)

+q
(1 − q)(� − �qn)

(1 − aq2)(1 − �q)
Pn−1(q

2x; aq2, b, �q; q)

]
;

Dn
n(x; a, b,�|q) = BnPn(qx; aq, b,�; q),

where the notation used is that of (3.23).

3.2.3. An identity

Theorem 3.5. The following identity holds:

n∑
i=0

Bn
i (x; �|q)Dn

i (t; a, b,�|q) = Ln

Pn+1(x)Pn(t) − Pn+1(t)Pn(x)

x − t
, (3.31)

where

Ln := (−a�)−nq−(n+1
2 )

M(1 − �)(1 − �q2n+1)

(aq, �, �; q)n+1

(q, bq, �q/�; q)n
,

and where we used the notation of (3.4) and (3.7).

Proof. The thesis follows by application of Lemma 2.2. �

4. Dual q-Bernstein basis

4.1. q-Bernstein basis polynomials

The q-Bernstein basis polynomials of degree n (n ∈ N),

bn
i (x; q) =

[
n

i

]
q

xi(x; q)n−i (0� i�n),

are recently introduced by Phillips [20] (see also [18,19]). Remember that little q-Jacobi polyno-
mials are given by

pk(x; a, b|q) := 2�1

(
q−k, abqk+1

aq

∣∣∣∣∣ q; qx

)
(k = 0, 1, . . . )
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(see, e.g., [13, § 3.12]). Let us introduce the shifted little q-Jacobi polynomials by

p∗
k (x; a, b|q) := pk(x/(bq); a, b|q) (0 < aq < 1, bq < 1). (4.1)

Polynomials (4.1) are orthogonal with respect to the inner product

〈f, g〉lqJ :=
∫ 1

0
x� (qx; q)∞

(bqx; q)∞
f (bqx)g(bqx) dqx,

where a = q�, b = q�, �, � > −1. More specifically,

〈p∗
k , p

∗
l 〉lqJ = hk�kl, (4.2)

where

hk := C(aq)k
1 − �

1 − �q2k

(q, bq; q)k

(aq, �; q)k
(k�0) (4.3)

and

C ≡ C(a, b) := (1 − q)
(q, �q; q)∞
(aq, bq; q)∞

, � := abq. (4.4)

See, e.g., [13, § 3.12]. Notice that [13, § 3.5]

Pk(x; b, a, 0; q) = (−bq)kq(k
2)

(aq; q)k

(bq; q)k
p∗

k (x; a, b|q). (4.5)

Koornwinder [14] has shown that the orthogonality relation (4.2) is a limit case of (3.5) when
� ↑ 0.

Let us recall the following results [2]. q-Bernstein polynomials have the following representa-
tion in terms of the shifted little q-Jacobi polynomial basis:

bn
n−i (x; q) = (−�qn)−iq(i

2)(bq)n

[
n

i

]
q

(aq; q)n

(�q; q)n

(bq; q)i

(a−1q−n; q)i

×
n∑

j=0

qnj (1 − �q2j )(�, q−n; q)j

(1 − �)(q, �qn+1; q)j

×Qj

(
q−i; b, a, n

∣∣q)p∗
j (x; a, b|q), (4.6)

where 0� i�n, and the notation used is that of (3.8). Shifted little q-Jacobi polynomials have the
following representation in terms of q-Bernstein basis:

p∗
i (x; a, b|q) = (−bq)−iq−(i

2)
(bq; q)i

(aq; q)i

n∑
j=0

Rn−j (�(i); b, a, n|q) bn
j (x; q), (4.7)

where �(i) := q−i + �qi , 0� i�n, and the notation used is that of (3.9).

4.2. Dual q-Bernstein basis polynomials

Dual q-Bernstein basis polynomials of nth degree,

dn
0 (x; a, b; q), dn

1 (x; a, b; q), . . . , dn
n (x; a, b; q),
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are defined so that
〈
dn
i , bn

j

〉
lqJ

= �ij (i, j = 0, 1, . . . , n), where bn
j = bn

j (·; q), dn
j = dn

j (·; a,

b; q). In view of the above cited Koornwinder’s observation and (3.3), we must have

dn
i (x; a, b; q) = Dn

i (x; b, a, 0|q) (0� i�n). (4.8)

4.2.1. Recurrence relation

Corollary 4.1. We have the recurrence relation

dn+1
i (x; a, b; q) = 	n

i dn
i (x; a, b; q) + (1 − 	n

i ) dn
i−1(x; a, b; q)

+ϑn
i p

∗
n+1(x; a, b|q), (4.9)

where 0� i�n + 1, dn
−1(x; a, b; q) = dn

n+1(x; a, b; q) = 0, and

	n
i := [n − i + 1]q

[n + 1]q , ϑn
i := h−1

n+1
(q−n−1/b; q)i

(aq; q)i
,

notation used being that of (4.3).

Proof. The thesis follows by Theorem 3.1, in view of (4.8) and (4.5). �

4.2.2. Expansions

Corollary 4.2. Shifted little q-Jacobi polynomials have the following representation in terms of
dual q-Bernstein basis:

p∗
i (x; a, b|q) = C

(aq; q)n

(�q; q)n
(bq)n

(bq, q−n; q)i

(aq, �qn+1; q)i
(aqn+1)i

×
n∑

k=0

(−�qn)−kq(k
2)

[
n

k

]
q

(bq; q)k

(a−1q−n; q)k

×Rk

(
�(i); b, a, n

∣∣q) dn
n−k(x; a, b; q), (4.10)

where �(i) := q−i + �qi , 0� i�n. Dual q-Bernstein basis polynomials have the following
representation in terms of shifted little q-Jacobi polynomial basis:

dn
j (x; a, b; q) = C−1

n∑
k=0

(−1)kq−(k+1
2 ) (1 − �q2k)

(1 − �)�k

(�; q)k

(q; q)k

×Qk(q
j−n; b, a, n|q)p∗

k (x; a, b|q), (4.11)

where 0�j �n.

Proof. The result follows by reversing the roles of a and b in (3.17), (3.18), letting � ↑ 0 and
then using (4.5) and (4.8). �

Remark 4.3. Alternatively, we can obtain the above corollary using Lemma 2.1, (4.6), (4.7), and
(3.19).

Theorem 3.4 implies the following results.
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Corollary 4.4. The following formulas hold for j = 0, 1, . . . , n:

dn
j (x; a, b; q) = An

(q−n/b; q)j

(aq; q)j

×
j∑

k=0

(aqj+1)k
(q−j ; q)k

(aq2; q)k
p∗

n−k

(
x; aqk+1, b|q

)
; (4.12)

dn
n−j (x; a, b; q) = Bn(�qn)j

(q−n/a; q)j

(bq; q)j

×
j∑

k=0

qk (q−j ; q)k

(q−n/a; q)k
p∗

n−k

(
qk+1x; a, bqk+1|q

)
, (4.13)

where

An := (aq2, �q; q)n

C(aq)n(q, bq; q)n
, Bn := q−(n+1

2 ) (�q; q)n

C(−�)n(q; q)n
. (4.14)

Proof. Eqs. (4.12) and (4.13) follow by letting � ↑ 0 in (3.21) and (3.22), respectively, and using
(4.5) and (4.8). �

In particular, (4.12), (4.13) imply the formulas

dn
0 (x; a, b; q) = Anp

∗
n(x; aq, b|q); dn

n (x; a, b; q) = Bnp
∗
n(qx; a, bq|q),

where An and Bn are given in (4.14).

4.2.3. An identity

Corollary 4.5. The following identity holds:

n∑
i=0

bn
i (x; q) dn

i (t; a, b; q) = Ln

p∗
n+1(x)p∗

n(t) − p∗
n+1(t)p

∗
n(x)

x − t
, (4.15)

where p∗
k (x) = p∗

k (x; a, b|q), and

Ln := bq(aq; q)n+1(�q; q)n

Can(�q2n+1 − 1)(q, bq; q)n
.

Proof. The result follows by letting � ↑ 0 in (3.31), and using (3.3), (4.5) and (4.8). �

5. Dual Bernstein basis

5.1. Bernstein basis polynomials

Classical Bernstein polynomial basis of degree n (n ∈ N) is given by (see, e.g., [3, p. 66])

Bn
i (x) :=

(
n

i

)
xi(1 − x)n−i (0� i�n).
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Recall that

R
(�,�)

k (x) := (� + 1)k

k! 2F1

( −k, k + � + � + 1

� + 1

∣∣∣∣∣ 1 − x

)
(5.1)

are the shifted Jacobi polynomials (see, e.g., [17, p. 280, Eq. (46)]). For � > −1 and � > −1,
polynomials (5.1) are orthogonal with respect to the scalar product [17, p. 273]

〈f, g〉J :=
∫ 1

0
f (x)g(x)(1 − x)�x� dx;

more specifically,〈
R

(�,�)

k , R
(�,�)

l

〉
J

= K
(� + 1)k(� + 1)k

k!(2k/� + 1)(�)k
�kl, (5.2)

where

K := �(� + 1)�(� + 1)

�(� + 1)
, � := � + � + 1.

It can be shown that the orthogonality relation (4.2) reduces to (5.2) when q ↑ 1, and we have
[13, § 5.12]

lim
q↑1

pk

(
x; q�, q�∣∣q) = (−1)k

k!
(� + 1)k

R
(�,�)

k (x). (5.3)

Recall that the Hahn polynomials are defined by [13, § 1.5]

Qk(x; �, �, N) := 3F2

( −k, k + � + � + 1, −x

� + 1, −N

∣∣∣∣∣ 1

)
,

while the dual Hahn polynomials are given by [13, § 1.6]

Rk (
(x); 	, �, N) := 3F2

( −k, −x, x + 	 + � + 1

	 + 1, −N

∣∣∣∣∣ 1

)
,

where 0�k�N , N ∈ N, and 
(x) := x(x+	+�+1). Bernstein polynomials have the following
representation in terms of shifted Jacobi polynomial basis:

Bn
i (x) =

(
n

i

)
(� + 1)n−i (� + 1)i

×
n∑

j=0

(2j + �)(−n)j

(� + 1)j (j + �)n+1
Qj(i; �, �, n) R

(�,�)

j (x), (5.4)

where 0� i�n. This result follows from a formula given in [21], using [1, Corollary 3.3.5].
Conversely, shifted Jacobi polynomials have the following representation in terms of Bernstein
basis [4]:

R
(�,�)

i (x) = (� + 1)i

i!
n∑

j=0

Rn−j (
(i); �, �, n) Bn
j (x), (5.5)

where 
(i) := i(i + �), 0� i�n.
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5.2. Dual Bernstein basis polynomials

Dual Bernstein basis polynomials of degree n,

Dn
i (x; �, �) (i = 0, 1, . . . , n),

are defined so that 〈Dn
i , Bn

j 〉J = �ij (i, j = 0, 1, . . . , n), where Dn
i = Dn

i (·; �, �). In view of
(3.1) and (3.3), and the observation preceding (5.3), we have

Dn
i (x; �, �) = lim

q↑1
dn
i (x; q�, q�; q) (0� i�n). (5.6)

5.2.1. Recurrence relation
Limiting form of the recurrence relation (4.9) is given in the next theorem.

Theorem 5.1. We have

Dn+1
i (x; �, �) =

(
1 − i

n + 1

)
Dn

i (x; �, �) + i

n + 1
Dn

i−1(x; �, �) + ϑn
i R

(�,�)

n+1 (x), (5.7)

where 0� i�n + 1, Dn
−1(x; �, �) = Dn

n+1(x; �, �) = 0, and

ϑn
i := K−1(−1)n+1−i (2n + � + 2)(� + 1)n

(� + 1)i(� + 1)n+1−i

.

Notice that for the special case � = � = 0 Eq. (5.7) reduces to a result obtained by Ciesielski [5].

5.2.2. Expansions

Theorem 5.2. Shifted Jacobi polynomials have the following representation in terms of dual
Bernstein basis:

R
(�,�)

i (x) =K

(
n

i

)
(� + 1)i

(� + 1)n+i

×
n∑

k=0

(
n

k

)
(� + 1)k(� + 1)n−kRk(
(i); �, �, n)Dn

n−k(x; �, �), (5.8)

where 
(i) := i(i + �), 0� i�n. Dual Bernstein polynomials have the following representation
in terms of the shifted Jacobi polynomial basis:

Dn
i (x; �, �) = K−1

n∑
k=0

(−1)k
(2k/� + 1)(�)k

(� + 1)k
Qk(i; �, �, n)R

(�,�)

k (x), (5.9)

where 0� i�n.

Proof. Set a = q�, b = q� in (4.10) and (4.11), respectively, let q ↑ 1 and use (5.3), (3.1),

lim
q↑1

Qm(q−x; qA, qB, N |q) = Qm(x; A, B, N)

(see, e.g., [13, (5.6.1)]), and (5.6). �
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Corollary 5.3. We have

Dn
i (x; �, �) = Dn

n−i (1 − x; �, �) (i = 0, 1, . . . , n).

Proof. The result follows from (5.9) by using symmetry properties of shifted Jacobi and Hahn
polynomials,

R
(�,�)

k (x) = (−1)kR
(�,�)

k (1 − x),

(	 + 1)kQk (x; 	, �, N) = (−1)k(� + 1)kQk (N − x; �, 	, N) .

See, e.g., [1, p. 117], and [12]. �

Corollary 4.4 implies the following alternative formulas for the dual Bernstein polynomials.

Corollary 5.4. The following formulas hold for i = 0, 1, . . . , n:

Dn
i (x; �, �) = (−1)n−i (� + 1)n

K(� + 1)n−i (� + 1)i

i∑
k=0

(−i)k

(−n)k
R

(�,�+k+1)

n−k (x), (5.10)

Dn
n−i (x; �, �) = (−1)i(� + 1)n

K(� + 1)i(� + 1)n−i

i∑
k=0

(−1)k
(−i)k

(−n)k
R

(�+k+1,�)

n−k (x). (5.11)

Notice that the coefficients of the linear combinations in (5.10) and (5.11) do not depend on �
and �.

Proof. To obtain (5.10), set a = q�, b = q� in (4.12), let q ↑ 1, then use (5.3), (3.1) and (5.6).
Formula (5.11) follows from (5.10) by using Corollary 5.3. �

In particular, we have

Dn
0 (x; �, �) = (−1)n(� + 1)n

K(� + 1)n
R

(�,�+1)
n (x),

Dn
1 (x; �, �) = (−1)n−1(� + 1)n

K(� + 1)n−1(� + 1)

[
R

(�,�+1)
n (x) + 1

n
R

(�,�+2)

n−1 (x)

]
,

Dn
n−1(x; �, �) = (� + 1)n

K(� + 1)(� + 1)n−1

[
1

n
R

(�+2,�)

n−1 (x) − R
(�+1,�)
n (x)

]
,

Dn
n(x; �, �) = (� + 1)n

K(� + 1)n
R

(�+1,�)
n (x).

5.2.3. An identity
As a limiting form of the identity (4.15) with a = q�, b = q� when q ↑ 1, we obtain the

following.

Corollary 5.5. The following identity holds:

n∑
i=0

Bn
i (x)Dn

i (t; �, �) = Ln

R
(�,�)

n+1 (x)R
(�,�)
n (t) − R

(�,�)

n+1 (t)R
(�,�)
n (x)

x − t
,
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where

Ln := (n + 1)!(� + 1)n

K(2n + � + 1)(� + 1, � + 1)n
.

6. Applications

In computer-aided geometric design it is often necessary to find for a given function f the
polynomial wn of degree n that minimizes the error

d2 := 〈f − wn, f − wn〉 (6.1)

(see, e.g., [7,8,15]). Obviously, the solution can be given in the form

wn(x) =
n∑

k=0

akPk(x), (6.2)

where ak := 〈f, Pk〉/〈Pk, Pk〉 (k = 0, 1, . . . , n), and Pk’s are orthogonal with respect to the
given inner product. Note that the coefficients ak do not depend on n. However, the preferred
output representation should be compatible with CAGD conventions, e.g., the Bernstein–Bézier
form. Furthermore, usually the degree n of the polynomial wn is not known a priori. Instead,
the degree is successively increased until the approximation error (6.1) diminishes below the
prescribed value.

6.1. Conversion of the orthogonal polynomial form to the Bézier form

In this section, we discuss this topic in the most general context of Section 3. In the sequel,
Pk(x) denotes the big q-Jacobi polynomial Pk(x; a, b,�/q; q) (k�0). Let wn be a polynomial
given by the formula (6.2), the coefficients ak being known. According to (2.5), (3.11) and (3.19),
the coefficients cn

j in the generalized Bézier representation of wn,

wn(x) =
n∑

j=0

cn
j Bn

j (x; �|q), (6.3)

can be given by the formula:

cn
j = Tn(q

j−n) (j = 0, 1, . . . , n),

where Tn is the following polynomial in q−x :

Tn(q
−x) :=

n∑
i=0

aiQi(q
−x; a, b, n|q).

Notice that the values of cn
0 , cn

1 , . . . , cn
n may be efficiently computed by using the Clenshaw’s

algorithm for evaluating a linear combination of orthogonal polynomials (see, e.g.,
[25, § 10.2.1]).
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6.2. Recursive construction of the Bézier form for the least-squares approximation polynomials

Now, consider the problem of converting the polynomial

wn+1(x) =
n+1∑
k=0

akPk(x) = wn(x) + an+1Pn+1(x)

to the generalized Bézier form

wn+1(x) =
n+1∑
j=0

cn+1
j Bn+1

j (x; �|q),

under the assumption that the Bézier coefficients cn
i of the polynomial wn(x) are known (cf. (6.3)).

Observing that

cn
i = 〈f, Dn

i (·; a, b,�|q)〉bqJ (i = 0, 1, . . . , n),

and using recurrence relation (3.13), we obtain the formula

cn+1
i = 	n

i c
n
i + (1 − 	n

i−1)c
n
i−1 + ϑn

i hn+1an+1 (0� i�n + 1),

where cn
−1 = cn

n+1 = 0; the notation used is that of (3.6), (3.14), and (3.15).
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